Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430815

ABSTRACT

The BNT162b2 vaccine induces neutralizing activity (NA) in serum, but no data are available on whether a third-dose activates specific-immunity within the oral mucosa, representing the primary route of viral-entry. To carefully address this issue, we investigated if such immunity is boosted by SARS-CoV-2-infection; how long it is maintained over-time; and if it protects against the SARS-CoV-2 lineage B.1 (EU) and the emerging Delta and Omicron variants. NA was measured in plasma and saliva samples from: uninfected SARS-CoV-2-Vaccinated (SV), subjects infected prior to vaccination (SIV), and subjects who were infected after the second (SIV2) or the third (SIV3) vaccine dose. Samples were collected immediately before (T0), 15 days (T1), and 90 days (T2) post third-dose administration (SV and SIV), or 15 days post-infection (SIV2 and SIV3). In all the enrolled groups, NA in plasma and saliva: (i) was higher against EU compared to the other variants at all time-points (SV: T0 and T1, EU vs. both Delta and Omicron p < 0.001; T2 p < 0.01) (SIV: T0, EU vs. Delta p < 0.05; EU vs. Omi p < 0.01; T1 and T2 EU vs. Delta p < 0.01; EU vs. Omi p < 0.001); (ii) was boosted by the administration of the third dose; iii) declined over-time, albeit being detectable in almost all subjects at T2. The monitoring of NA over time will be important in clarifying if different NA levels may influence either acquisition or course of infection to properly plan the timing of a fourth vaccine dose administration.


Subject(s)
COVID-19 , Vaccines , Humans , BNT162 Vaccine , Saliva , COVID-19/prevention & control , SARS-CoV-2
3.
Cells ; 11(10)2022 05 19.
Article in English | MEDLINE | ID: mdl-35626728

ABSTRACT

Recent evidence suggests that SARS-CoV-2 hinders immune responses via dopamine (DA)-related mechanisms. Nonetheless, studies addressing the specific role of DA in the frame of SARS-CoV-2 infection are still missing. In the present study, we investigate the role of DA in SARS-CoV-2 replication along with potential links with innate immune pathways in CaLu-3 human epithelial lung cells. We document here for the first time that, besides DA synthetic pathways, SARS-CoV-2 alters the expression of D1 and D2 DA receptors (D1DR, D2DR), while DA administration reduces viral replication. Such an effect occurs at non-toxic, micromolar-range DA doses, which are known to induce receptor desensitization and downregulation. Indeed, the antiviral effects of DA were associated with a robust downregulation of D2DRs both at mRNA and protein levels, while the amount of D1DRs was not significantly affected. While halting SARS-CoV-2 replication, DA, similar to the D2DR agonist quinpirole, upregulates the expression of ISGs and Type-I IFNs, which goes along with the downregulation of various pro-inflammatory mediators. In turn, administration of Type-I IFNs, while dramatically reducing SARS-CoV-2 replication, converges in downregulating D2DRs expression. Besides configuring the CaLu-3 cell line as a suitable model to study SARS-CoV-2-induced alterations at the level of the DA system in the periphery, our findings disclose a previously unappreciated correlation between DA pathways and Type-I IFN response, which may be disrupted by SARS-CoV-2 for host cell invasion and replication.


Subject(s)
COVID-19 Drug Treatment , Interferon Type I , Dopamine , Down-Regulation , Humans , Interferon Type I/genetics , Receptors, Dopamine D2 , SARS-CoV-2 , Up-Regulation
4.
Front Immunol ; 13: 820250, 2022.
Article in English | MEDLINE | ID: mdl-35359971

ABSTRACT

Background: SARS-CoV-2 transmission mainly occurs through exposure of the upper airway mucosa to infected secretions such as saliva, which are excreted by an infected person. Thus, oral mucosal immunity plays a central role in the prevention of and early defense against SARS-CoV-2 infection. Although virus-specific antibody response has been extensively investigated in blood samples of SARS-CoV-2-infected patients and vaccinees, local humoral immunity in the oral cavity and its relationship to systemic antibody levels needs to be further addressed. Material and Methods: We fine-tuned a virus neutralization assay (vNTA) to measure the neutralizing activity (NA) of plasma and saliva samples from 20 SARS-CoV-2-infected (SI), 40 SARS-CoV-2-vaccinated (SV), and 28 SARS-CoV-2-vaccinated subjects with a history of infection (SIV) using the "wild type" SARS-CoV-2 lineage B.1 (EU) and the Delta (B.1.617.2) strains. To validate the vNTA results, the presence of neutralizing antibodies (NAbs) to the spike receptor binding domain (RBD) was evaluated with an ELISA assay. Results: NA to SARS-CoV-2 lineage B.1 (EU) was present in plasma samples from all the tested subjects, with higher titers in SIV compared to both SI and SV. Conversely, NA was detected in saliva samples from 10.3% SV, 45% SI, and 92.6% SIV, with significantly lower titers in SV compared to both SI and SIV. The detection of NAbs in saliva reflected its reduced NA in SV. Discussion: The difference in NA of plasma vs. saliva was confirmed in a vNTA where the SARS-CoV-2 B.1 and Delta strains were tested head-to-head, which also revealed a reduced NA of both specimens compared to the B.1 variant. Conclusions: The administration of SARS-CoV-2 vaccines was associated with limited virus NA in the oral cavity, as measured in saliva and in comparison to plasma. This difference was more evident in vaccinees without a history of SARS-CoV-2 infection, possibly highlighting the importance of local exposure at the site of virus acquisition to effectively prevent the infection and block its spread. Nevertheless, the presence of immune escape mutations as possibly represented by the SARS-CoV-2 Delta variant negatively affects both local and systemic efficacy of NA associated with vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19 Vaccines , Humans , Saliva , Spike Glycoprotein, Coronavirus
5.
J Photochem Photobiol ; 10: 100107, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35036965

ABSTRACT

We performed an in-depth analysis of the virucidal effect of discrete wavelengths: UV-C (278 nm), UV-B (308 nm), UV-A (366 nm) and violet (405 nm) on SARS-CoV-2. By using a highly infectious titer of SARS-CoV-2 we observed that the violet light-dose resulting in a 2-log viral inactivation is only 104 times less efficient than UV-C light. Moreover, by qPCR (quantitative Polymerase chain reaction) and fluorescence in situ hybridization (FISH) approach we verified that the viral titer typically found in the sputum of COVID-19 patients can be completely inactivated by the long UV-wavelengths corresponding to UV-A and UV-B solar irradiation. The comparison of the UV action spectrum on SARS-CoV-2 to previous results obtained on other pathogens suggests that RNA viruses might be particularly sensitive to long UV wavelengths. Our data extend previous results showing that SARS-CoV-2 is highly susceptible to UV light and offer an explanation to the reduced incidence of SARS-CoV-2 infection seen in the summer season.

6.
Free Radic Biol Med ; 160: 219-226, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32768567

ABSTRACT

Telomere shortening and mitochondrial DNA (mtDNA) copy number are associated with human disease and a reduced life span. Cystathionine ß-synthase (CBS) is a housekeeping enzyme that catalyzes the first step in metabolic conversion of homocysteine (Hcy) to cysteine. Mutations in the CBS gene cause CBS deficiency, a rare recessive metabolic disease, manifested by severe hyperhomocysteinemia (HHcy) and thromboembolism, which ultimately reduces the life span. However, it was not known whether telomere shortening or mtDNA is involved in the pathology of human CBS deficiency. We quantified leukocyte telomere length (TL), mtDNA copy number, and plasma Hcy levels in CBS-/- patients (n = 23) and in sex- and age-matched unaffected CBS+/+ control individuals (n = 28) 0.08-57 years old. We found that TL was significantly increased in severely HHcy CBS-/- female patients but unaffected in severely HHcy CBS-/- male patients, relative to the corresponding CBS+/+ controls who had normal plasma Hcy levels. In multiple regression analysis TL was associated with CBS genotype in women but not in men. MtDNA copy number was not significantly affected by the CBS-/- genotype. Taken together, these findings identify the CBS gene as a new locus in human DNA that affects TL in women and illustrate a concept that a housekeeping metabolic gene can be involved in telomere biology. Our findings suggest that neither telomere shortening nor reduced mtDNA copy number contribute to the reduced life span in CBS-/- patients.


Subject(s)
Cystathionine beta-Synthase , DNA, Mitochondrial , Homocystinuria , Hyperhomocysteinemia , Telomere Shortening , Adolescent , Adult , Child , Child, Preschool , Cystathionine beta-Synthase/deficiency , Cystathionine beta-Synthase/genetics , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Female , Homocysteine , Humans , Infant , Infant, Newborn , Male , Middle Aged , Telomere/genetics , Young Adult
7.
Int J Mol Sci ; 21(7)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260476

ABSTRACT

Cystathionine ß-synthase (CBS) is a housekeeping enzyme that catalyzes the first step of the homocysteine to cysteine transsulfuration pathway. Homozygous deletion of the Cbs gene in mice causes severe hyperhomocysteinemia and reduces life span. Here, we examined a possible involvement of senescence, mitochondrial DNA, and telomeres in the reduced life span of Cbs-/- mice. We found that senescence-related p21, Pai-1, Mcp1, and Il-6 mRNAs were significantly upregulated (2-10-fold) in liver, while p21 was upregulated in the brain of Cbs-/- mice (n = 20) compared with control Cbs+/- siblings (n = 20) in a sex- and age-dependent manner. Telomere length in blood (n = 80), liver (n = 40), and brain (n = 40) was not affected by the Cbs-/- genotype, but varied with sex and/or age. Levels of mitochondrial DNA tended to be reduced in livers, but not brains and blood, of Cbs-/- females (n = 20-40). The Cbs-/- genotype significantly reduced Tert mRNA expression in brain, but not liver, in a sex- and age-dependent manner. Multiple regression analysis showed that the senescence-related liver (but not brain) mRNAs and liver (but not brain or blood) mitochondrial DNA were associated with the Cbs genotype. In contrast, telomere length in blood, brain, and liver was not associated with the Cbs genotype or hyperhomocysteinemia, but was associated with sex (in brain and liver) and age (in brain and blood). Taken together, these findings suggest that the changes in senescence marker expression and mtDNA levels, but not telomere shortening, could account for the reduced life span of Cbs-/- mice.


Subject(s)
Cystathionine beta-Synthase/genetics , DNA, Mitochondrial/genetics , Gene Dosage , Longevity/genetics , Telomere Homeostasis , Animals , Brain/growth & development , Brain/metabolism , Female , Genetic Loci , Kidney/growth & development , Kidney/metabolism , Liver/growth & development , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Telomerase/genetics , Telomerase/metabolism
8.
FASEB J ; 30(11): 3810-3821, 2016 11.
Article in English | MEDLINE | ID: mdl-27530978

ABSTRACT

Cystathionine ß-synthase (CBS) deficiency, a genetic disorder in homocysteine (Hcy) metabolism in humans, elevates plasma Hcy-thiolactone and leads to connective tissue abnormalities that affect the cardiovascular and skeletal systems. However, the underlying mechanism of these abnormalities is not understood. Hcy-thiolactone has the ability to form isopeptide bonds with protein lysine residues, which generates N-homocysteinylated protein. Because lysine residues are involved in collagen cross-linking, N-homocysteinylation of these lysines should impair cross-linking. Using a Tg-I278T Cbs-/- mouse model of hyperhomocysteinemia (HHcy) which replicates the connective tissue abnormalities observed in CBS-deficient patients, we found that N-Hcy-collagen was elevated in bone, tail, and heart of Cbs-/- mice, whereas pyridinoline cross-links were significantly reduced. Plasma deoxypyridinoline cross-link and cross-linked carboxyterminal telopeptide of type I collagen were also significantly reduced in the Cbs-/- mice. Lysine oxidase activity and mRNA level were not reduced by the Cbs-/- genotype. We also showed that collagen carries S-linked Hcy bound to the thiol of N-linked Hcy. In vitro experiments showed that Hcy-thiolactone modifies lysine residues in collagen type I α-1 chain. Residue K160, located in the nonhelical N-telopeptide region and involved in pyridinoline cross-link formation, was also N-homocysteinylated in vivo Taken together, our findings showed that N-homocysteinylation of collagen in Cbs-/- mice impairs its cross-linking. These findings explain, at least in part, connective tissue abnormalities observed in HHcy.-Perla-Kajan, J., Utyro, O., Rusek, M., Malinowska, A., Sitkiewicz, E., Jakubowski, H. N-Homocysteinylation impairs collagen cross-linking in cystathionine ß-synthase-deficient mice: a novel mechanism of connective tissue abnormalities.


Subject(s)
Collagen Type I/metabolism , Connective Tissue/metabolism , Cystathionine beta-Synthase/metabolism , Homocysteine/analogs & derivatives , Hyperhomocysteinemia/metabolism , Animals , Collagen Type I, alpha 1 Chain , Cystathionine beta-Synthase/genetics , Homocysteine/metabolism , Homocystinuria/genetics , Lysine/metabolism , Mice, Knockout , Peptides/metabolism
9.
Mol Genet Metab ; 112(4): 339-46, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24913063

ABSTRACT

SCOPE: Hyperhomocysteinemia (HHcy) induced by dietary or genetic factors is linked to kidney disease. Bleomycin hydrolase (Blmh) metabolizes Hcy-thiolactone to Hcy. We aimed to explain the role of dietary HHcy in kidney disease. METHODS AND RESULTS: We examined kidney proteome in dietary HHcy and Blmh-knockout mouse models using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We found that the kidney proteome was altered by dietary HHcy and the Blmh(-/-) genotype. Proteins involved in metabolism of lipoprotein (ApoA1), amino acid and protein (Acy1, Hspd1), carbohydrate (Pdhb, Fbp1-isoform 1, Eno1), and energy metabolism (Ndufs8, Ldhd) were down-regulated. Proteins involved in carbohydrate metabolism (Fbp1-isoform 2), oxidative stress response (Prdx2), and detoxification (Glod4) were up-regulated. The Blmh(-/-) genotype down-regulated Glod4 isoform 3 mRNA but did not affect isoform 1 mRNA expression in mouse kidneys, suggesting post-transcriptional regulation of the Glod4 protein by the Blmh(+/+) genotype. Responses of ApoA1, Acy1, Hspd1, Ndufs8, Fbp1, Eno1, and Prdx2 to HHcy and/or Blmh deficiency mimic their responses to renal disease. CONCLUSION: Our findings indicate that Blmh interacts with diverse cellular processes--lipoprotein, amino acid and protein, carbohydrate, and energy metabolisms, detoxification, antioxidant defenses--that are essential for normal kidney homeostasis and that deregulation of these processes can account for the involvement of HHcy in kidney disease.


Subject(s)
Cysteine Endopeptidases/deficiency , Hyperhomocysteinemia/enzymology , Kidney Diseases/enzymology , Kidney Diseases/pathology , Kidney/metabolism , Proteins/metabolism , Animals , Blotting, Western , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Diet , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Enzymologic , Genotype , Hyperhomocysteinemia/genetics , Hyperhomocysteinemia/pathology , Isoelectric Focusing , Methionine , Mice, Inbred C57BL , Protein Isoforms/metabolism , Reproducibility of Results
10.
Amino Acids ; 46(6): 1471-80, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24633403

ABSTRACT

The liver is the major contributor to homocysteine (Hcy) metabolism and fatty liver disease is associated with hyperhomocysteinemia. Bleomycin hydrolase (Blmh) is an aminohydrolase that also participates in Hcy metabolism by hydrolyzing Hcy-thiolactone. To gain insight into hepatic functions of Blmh, we analyzed the liver proteome of Blmh(-/-) and Blmh(+/+) mice in the absence and presence of diet-induced (high methionine) hyperhomocysteinemia using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We identified eleven liver proteins whose expression was significantly altered as a result of the Blmh gene inactivation. The differential expression (Blmh(-/-) vs. Blmh(+/+)) of four liver proteins was lower, of two proteins was higher, and was further modified in mice fed with a hyperhomocysteinemic high-Met diet. The down-regulated proteins are involved in lipoprotein metabolism (ApoA1, ApoE), antigen processing (Psme1), energy metabolism (Atp5h, Gamt), methylglyoxal detoxification (Glo1), oxidative stress response (Sod1), and inactivation of catecholamine neurotransmitters (Comt). The two up-regulated proteins are involved in nitric oxide generation (Ddah1) and xenobiotic detoxification (Sult1c1). We also found that livers of Blmh(-/-) mice expressed a novel variant of glyoxalase domain-containing protein 4 (Glod4) by a post-transcriptional mechanism. Our findings suggest that Blmh interacts with diverse cellular processes-from lipoprotein metabolism, nitric oxide regulation, antigen processing, and energy metabolism to detoxification and antioxidant defenses-that are essential for liver homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in fatty liver disease.


Subject(s)
Cysteine Endopeptidases/metabolism , Hyperhomocysteinemia/metabolism , Liver/metabolism , Animals , Homeostasis , Hyperhomocysteinemia/chemically induced , Male , Methionine/administration & dosage , Mice, Inbred C57BL , Proteome/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...